SUDUT - SUDUT BERELASI
Rumus Sudut Berelasi Trigonometri
Ada beberapa rumus untuk sudut berelasi trigonometri yang biasa digunakan, diantaranya yaitu: rumus sudut berelasi berkuadran I, rumus sudut berelasi berkuadran II, rumus sudut berelasi berkuadran III dan rumus sudut berelasi berkuadran IV.
Pada artikel ini kita akan uraikan beberapa rumus tersebut berikut contoh soalnya.
Rumus Sudut Berelasi Berkuadran I
Sudut – sudut kuadran I ini dihasilkan dari α lancip, maka (90° − α) menghasilkan sudut – sudut kuadran I. Di dalam teori trigonometri, relasi sudut – sudut berelasi in dapat dinyatakan sebagai berikut :
sin (90° − α) = cos α
cos (90° − α) = sin α
tan (90° − α) = cot α
Sudut Berelasi Kuadran II
Untuk sudut – sudut berelasi kuadran II trigonometri ini dihasilkan oleh α lancip, maka (90° + α) dan (180° − α), relasi sudut-sudut ini dapat dinyatakan dengan sebagai berikut :
n (90° + α) = cos αc
os (90° + α) = -sin αt
an (90° + α) = -cot αs
in (180° − α) = sin αc
os (180° − α) = -cos αt
an (180° − α) = -tan α
Sudut Relasi Kuadran III
Untuk sudut berelasi kudran III ini dihasilkan oleh α lancip, maka (180° + α) dan (270° − α). Di dalam trigonometri, relasi sudut – sudut dinyatakan sebagai berikut :
sin (180° + α) = -sin α
cos (180° + α) = -cos α
tan (180° + α) = tan αsin (270° − α) = -cos α
cos (270° − α) = -sin α
tan (270° − α) = cot α
Sudut Relasi Kuadran IV
Untuk sudut berelasi kuadran IV ini dihasikan oleh α lancip, maka (270° + α) dan (360° − α) . D i dalam trigonometri, relasi sudut-sudut ini biasa dinyatakan sebagai berikut :
sin (270° + α) = -cos α
cos (270° + α) = sin α
tan (270° + α) = -cot αsin (360° − α) = -sin α
cos (360° − α) = cos α
tan (360° − α) = -tan α
Apabila diperhatikan, maka rumus-rumus diatas mempunyai pola yang hampir sama, oleh karena itu sangatlah tidak bijak apabila harus menghafalnya satu per satu.
Ada 2 hal yang perlu diperhatikan, yaitu sudut relasi yang dipakai dan tanda untuk tiap kuadran.
Untuk relasi (90° ± α) atau (270° ± α), maka :
sin → cos
cos → sin
tan → cot
Untuk relasi (180° ± α) atau (360° ± α), maka :
sin = sin
cos = cos
tan = tan
Tanda masing – masing kuadran yaitu:
Kuadran I (0 − 90°) = semua positif
Kuadran II (90° − 180°) = sinus positif
Kuadran III (180° − 270°) = tangen positif.
Kuadran IV (270° − 360°) = cosinus positif
Nama:Putra Tegar Pratama(24)
Kelas:X MIPA 2
Komentar
Posting Komentar